16 research outputs found

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Determinants of Bacteriophage 933W Repressor DNA Binding Specificity

    Get PDF
    We reported previously that 933W repressor apparently does not cooperatively bind to adjacent sites on DNA and that the relative affinities of 933W repressor for its operators differ significantly from that of any other lambdoid bacteriophage. These findings indicate that the operational details of the lysis-lysogeny switch of bacteriophage 933W are unique among lambdoid bacteriophages. Since the functioning of the lysis-lysogeny switch in 933W bacteriophage uniquely and solely depends on the order of preference of 933W repressor for its operators, we examined the details of how 933W repressor recognizes its DNA sites. To identify the specificity determinants, we first created a molecular model of the 933W repressor-DNA complex and tested the predicted protein-DNA interactions. These results of these studies provide a picture of how 933W repressor recognizes its DNA sites. We also show that, opposite of what is normally observed for lambdoid phages, 933W operator sequences have evolved in such a way that the presence of the most commonly found base sequences at particular operator positions serves to decrease, rather than increase, the affinity of the protein for the site. This finding cautions against assuming that a consensus sequence derived from sequence analysis defines the optimal, highest affinity DNA binding site for a protein

    The effects of a novel histamine-3 receptor inverse agonist on essential tremor in comparison to stable levels of alcohol.

    No full text
    Item does not contain fulltextEssential tremor (ET) is a common movement disorder. Animal studies show that histaminergic modulation may affect the pathological processes involved in the generation of ET. Histamine-3 receptor inverse agonists (H3RIA) have demonstrated attenuating effects on ET in the harmaline rat model. In this double-blind, three-way cross-over, single-dose, double-dummy study the effects of 25 mg of a novel H3RIA (MK-0249) and a stable alcohol level (0.6 g L(-1)) were compared with placebo, in 18 patients with ET. Tremor was evaluated using laboratory tremorography, portable tremorography and a clinical rating scale. The Leeds Sleep Evaluation Questionnaire (LSEQ) and a choice reaction time (CRT) test were performed to evaluate potential effects on sleep and attention, respectively. A steady state of alcohol significantly diminished tremor as assessed by laboratory tremorography, portable tremorography and clinical ratings compared with placebo. A high single MK-0249 dose was not effective in reducing tremor, but caused significant effects on the LSEQ and the CRT test. These results suggest that treatment with a single dose of MK-0249 does not improve tremor in alcohol-responsive patients with ET, whereas stable levels of alcohol as a positive control reproduced the commonly reported tremor-diminishing effects of alcohol.1 februari 201

    High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer's disease in human cerebrospinal fluid

    No full text
    Disease modifying treatments for Alzheimer's disease (AD) constitute a major goal in medicine. Current trends suggest that biomarkers reflective of AD neuropathology and modifiable by treatment would provide supportive evidence for disease modification. Nevertheless, a lack of quantitative tools to assess disease modifying treatment effects remains a major hurdle. Cerebrospinal fluid (CSF) biochemical markers such as total tau, p-tau and Ab42 are well established markers of AD; however, global quantitative biochemical changes in CSF in AD disease progression remain largely uncharacterized. Here we applied a high resolution open discovery platform, dMS, to profile a cross-sectional cohort of lumbar CSF from post-mortem diagnosed AD patients versus those from non-AD/non-demented (control) patients. Multiple markers were identified to be statistically significant in the cohort tested. We selected two markers SME-1 (p<0.0001) and SME-2 (p = 0.0004) for evaluation in a second independent longitudinal cohort of human CSF from post-mortem diagnosed AD patients and age-matched and case-matched control patients. In cohort-2, SME-1, identified as neuronal secretory protein VGF, and SME-2, identified as neuronal pentraxin receptor-1 (NPTXR), in AD were 21% (p = 0.039) and 17% (p = 0.026) lower, at baseline, respectively, than in controls. Linear mixed model analysis in the longitudinal cohort estimate a decrease in the levels of VGF and NPTXR at the rate of 10.9% and 6.9% per year in the AD patients, whereas both markers increased in controls. Because these markers are detected by mass spectrometry without the need for antibody reagents, targeted MS based assays provide a clear translation path for evaluating selected AD disease-progression markers with high analytical precision in the clinic
    corecore